Metamath Proof Explorer


Theorem brgic

Description: The relation "is isomorphic to" for groups. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion brgic R𝑔SRGrpIsoS

Proof

Step Hyp Ref Expression
1 df-gic 𝑔=GrpIso-1V1𝑜
2 gimfn GrpIsoFnGrp×Grp
3 1 2 brwitnlem R𝑔SRGrpIsoS