Metamath Proof Explorer


Theorem brimageg

Description: Closed form of brimage . (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion brimageg A V B W A 𝖨𝗆𝖺𝗀𝖾 R B B = R A

Proof

Step Hyp Ref Expression
1 breq1 x = A x 𝖨𝗆𝖺𝗀𝖾 R y A 𝖨𝗆𝖺𝗀𝖾 R y
2 imaeq2 x = A R x = R A
3 2 eqeq2d x = A y = R x y = R A
4 1 3 bibi12d x = A x 𝖨𝗆𝖺𝗀𝖾 R y y = R x A 𝖨𝗆𝖺𝗀𝖾 R y y = R A
5 breq2 y = B A 𝖨𝗆𝖺𝗀𝖾 R y A 𝖨𝗆𝖺𝗀𝖾 R B
6 eqeq1 y = B y = R A B = R A
7 5 6 bibi12d y = B A 𝖨𝗆𝖺𝗀𝖾 R y y = R A A 𝖨𝗆𝖺𝗀𝖾 R B B = R A
8 vex x V
9 vex y V
10 8 9 brimage x 𝖨𝗆𝖺𝗀𝖾 R y y = R x
11 4 7 10 vtocl2g A V B W A 𝖨𝗆𝖺𝗀𝖾 R B B = R A