Metamath Proof Explorer


Theorem brimageg

Description: Closed form of brimage . (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion brimageg AVBWA𝖨𝗆𝖺𝗀𝖾RBB=RA

Proof

Step Hyp Ref Expression
1 breq1 x=Ax𝖨𝗆𝖺𝗀𝖾RyA𝖨𝗆𝖺𝗀𝖾Ry
2 imaeq2 x=ARx=RA
3 2 eqeq2d x=Ay=Rxy=RA
4 1 3 bibi12d x=Ax𝖨𝗆𝖺𝗀𝖾Ryy=RxA𝖨𝗆𝖺𝗀𝖾Ryy=RA
5 breq2 y=BA𝖨𝗆𝖺𝗀𝖾RyA𝖨𝗆𝖺𝗀𝖾RB
6 eqeq1 y=By=RAB=RA
7 5 6 bibi12d y=BA𝖨𝗆𝖺𝗀𝖾Ryy=RAA𝖨𝗆𝖺𝗀𝖾RBB=RA
8 vex xV
9 vex yV
10 8 9 brimage x𝖨𝗆𝖺𝗀𝖾Ryy=Rx
11 4 7 10 vtocl2g AVBWA𝖨𝗆𝖺𝗀𝖾RBB=RA