Metamath Proof Explorer


Theorem brsdom2

Description: Alternate definition of strict dominance. Definition 3 of Suppes p. 97. (Contributed by NM, 27-Jul-2004)

Ref Expression
Hypotheses brsdom2.1 AV
brsdom2.2 BV
Assertion brsdom2 ABAB¬BA

Proof

Step Hyp Ref Expression
1 brsdom2.1 AV
2 brsdom2.2 BV
3 dfsdom2 =-1
4 3 eleq2i ABAB-1
5 df-br ABAB
6 df-br ABAB
7 df-br BABA
8 1 2 opelcnv AB-1BA
9 7 8 bitr4i BAAB-1
10 9 notbii ¬BA¬AB-1
11 6 10 anbi12i AB¬BAAB¬AB-1
12 eldif AB-1AB¬AB-1
13 11 12 bitr4i AB¬BAAB-1
14 4 5 13 3bitr4i ABAB¬BA