Metamath Proof Explorer


Theorem brsigarn

Description: The Borel Algebra is a sigma-algebra on the real numbers. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion brsigarn 𝔅 sigAlgebra

Proof

Step Hyp Ref Expression
1 fvex topGen ran . V
2 sigagensiga topGen ran . V 𝛔 topGen ran . sigAlgebra topGen ran .
3 1 2 ax-mp 𝛔 topGen ran . sigAlgebra topGen ran .
4 df-brsiga 𝔅 = 𝛔 topGen ran .
5 uniretop = topGen ran .
6 5 fveq2i sigAlgebra = sigAlgebra topGen ran .
7 3 4 6 3eltr4i 𝔅 sigAlgebra