Metamath Proof Explorer


Theorem brtrclfvcnv

Description: Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 10-May-2020)

Ref Expression
Assertion brtrclfvcnv R V A t+ R -1 B r R -1 r r r r A r B

Proof

Step Hyp Ref Expression
1 cnvexg R V R -1 V
2 brtrclfv R -1 V A t+ R -1 B r R -1 r r r r A r B
3 1 2 syl R V A t+ R -1 B r R -1 r r r r A r B