Metamath Proof Explorer


Theorem brtxp2

Description: The binary relation over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014) (Revised by Mario Carneiro, 3-May-2015)

Ref Expression
Hypothesis brtxp2.1 AV
Assertion brtxp2 ARSBxyB=xyARxASy

Proof

Step Hyp Ref Expression
1 brtxp2.1 AV
2 txpss3v RSV×V×V
3 2 brel ARSBAVBV×V
4 3 simprd ARSBBV×V
5 elvv BV×VxyB=xy
6 4 5 sylib ARSBxyB=xy
7 6 pm4.71ri ARSBxyB=xyARSB
8 19.41vv xyB=xyARSBxyB=xyARSB
9 7 8 bitr4i ARSBxyB=xyARSB
10 breq2 B=xyARSBARSxy
11 10 pm5.32i B=xyARSBB=xyARSxy
12 11 2exbii xyB=xyARSBxyB=xyARSxy
13 vex xV
14 vex yV
15 1 13 14 brtxp ARSxyARxASy
16 15 anbi2i B=xyARSxyB=xyARxASy
17 3anass B=xyARxASyB=xyARxASy
18 16 17 bitr4i B=xyARSxyB=xyARxASy
19 18 2exbii xyB=xyARSxyxyB=xyARxASy
20 9 12 19 3bitri ARSBxyB=xyARxASy