Metamath Proof Explorer


Theorem brvdif2

Description: Binary relation with universal complement. (Contributed by Peter Mazsa, 14-Jul-2018)

Ref Expression
Assertion brvdif2 AVRB¬ABR

Proof

Step Hyp Ref Expression
1 brvdif AVRB¬ARB
2 df-br ARBABR
3 1 2 xchbinx AVRB¬ABR