Metamath Proof Explorer


Theorem brwdomn0

Description: Weak dominance over nonempty sets. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion brwdomn0 XX*Yzz:YontoX

Proof

Step Hyp Ref Expression
1 relwdom Rel*
2 1 brrelex2i X*YYV
3 2 a1i XX*YYV
4 fof z:YontoXz:YX
5 4 fdmd z:YontoXdomz=Y
6 vex zV
7 6 dmex domzV
8 5 7 eqeltrrdi z:YontoXYV
9 8 exlimiv zz:YontoXYV
10 9 a1i Xzz:YontoXYV
11 brwdom YVX*YX=zz:YontoX
12 df-ne X¬X=
13 biorf ¬X=zz:YontoXX=zz:YontoX
14 12 13 sylbi Xzz:YontoXX=zz:YontoX
15 14 bicomd XX=zz:YontoXzz:YontoX
16 11 15 sylan9bbr XYVX*Yzz:YontoX
17 16 ex XYVX*Yzz:YontoX
18 3 10 17 pm5.21ndd XX*Yzz:YontoX