Metamath Proof Explorer


Theorem btwnz

Description: Any real number can be sandwiched between two integers. Exercise 2 of Apostol p. 28. (Contributed by NM, 10-Nov-2004)

Ref Expression
Assertion btwnz Axx<AyA<y

Proof

Step Hyp Ref Expression
1 renegcl AA
2 arch AzA<z
3 1 2 syl AzA<z
4 nnre zz
5 ltnegcon1 AzA<zz<A
6 5 ex AzA<zz<A
7 4 6 syl5 AzA<zz<A
8 7 pm5.32d AzA<zzz<A
9 nnnegz zz
10 breq1 x=zx<Az<A
11 10 rspcev zz<Axx<A
12 9 11 sylan zz<Axx<A
13 8 12 syl6bi AzA<zxx<A
14 13 expd AzA<zxx<A
15 14 rexlimdv AzA<zxx<A
16 3 15 mpd Axx<A
17 arch AyA<y
18 nnz yy
19 18 anim1i yA<yyA<y
20 19 reximi2 yA<yyA<y
21 17 20 syl AyA<y
22 16 21 jca Axx<AyA<y