| Step | Hyp | Ref | Expression | 
						
							| 1 |  | renegcl | ⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ ) | 
						
							| 2 |  | arch | ⊢ ( - 𝐴  ∈  ℝ  →  ∃ 𝑧  ∈  ℕ - 𝐴  <  𝑧 ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ∃ 𝑧  ∈  ℕ - 𝐴  <  𝑧 ) | 
						
							| 4 |  | nnre | ⊢ ( 𝑧  ∈  ℕ  →  𝑧  ∈  ℝ ) | 
						
							| 5 |  | ltnegcon1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( - 𝐴  <  𝑧  ↔  - 𝑧  <  𝐴 ) ) | 
						
							| 6 | 5 | ex | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝑧  ∈  ℝ  →  ( - 𝐴  <  𝑧  ↔  - 𝑧  <  𝐴 ) ) ) | 
						
							| 7 | 4 6 | syl5 | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝑧  ∈  ℕ  →  ( - 𝐴  <  𝑧  ↔  - 𝑧  <  𝐴 ) ) ) | 
						
							| 8 | 7 | pm5.32d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 𝑧  ∈  ℕ  ∧  - 𝐴  <  𝑧 )  ↔  ( 𝑧  ∈  ℕ  ∧  - 𝑧  <  𝐴 ) ) ) | 
						
							| 9 |  | nnnegz | ⊢ ( 𝑧  ∈  ℕ  →  - 𝑧  ∈  ℤ ) | 
						
							| 10 |  | breq1 | ⊢ ( 𝑥  =  - 𝑧  →  ( 𝑥  <  𝐴  ↔  - 𝑧  <  𝐴 ) ) | 
						
							| 11 | 10 | rspcev | ⊢ ( ( - 𝑧  ∈  ℤ  ∧  - 𝑧  <  𝐴 )  →  ∃ 𝑥  ∈  ℤ 𝑥  <  𝐴 ) | 
						
							| 12 | 9 11 | sylan | ⊢ ( ( 𝑧  ∈  ℕ  ∧  - 𝑧  <  𝐴 )  →  ∃ 𝑥  ∈  ℤ 𝑥  <  𝐴 ) | 
						
							| 13 | 8 12 | biimtrdi | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 𝑧  ∈  ℕ  ∧  - 𝐴  <  𝑧 )  →  ∃ 𝑥  ∈  ℤ 𝑥  <  𝐴 ) ) | 
						
							| 14 | 13 | expd | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝑧  ∈  ℕ  →  ( - 𝐴  <  𝑧  →  ∃ 𝑥  ∈  ℤ 𝑥  <  𝐴 ) ) ) | 
						
							| 15 | 14 | rexlimdv | ⊢ ( 𝐴  ∈  ℝ  →  ( ∃ 𝑧  ∈  ℕ - 𝐴  <  𝑧  →  ∃ 𝑥  ∈  ℤ 𝑥  <  𝐴 ) ) | 
						
							| 16 | 3 15 | mpd | ⊢ ( 𝐴  ∈  ℝ  →  ∃ 𝑥  ∈  ℤ 𝑥  <  𝐴 ) | 
						
							| 17 |  | arch | ⊢ ( 𝐴  ∈  ℝ  →  ∃ 𝑦  ∈  ℕ 𝐴  <  𝑦 ) | 
						
							| 18 |  | nnz | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℤ ) | 
						
							| 19 | 18 | anim1i | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝐴  <  𝑦 )  →  ( 𝑦  ∈  ℤ  ∧  𝐴  <  𝑦 ) ) | 
						
							| 20 | 19 | reximi2 | ⊢ ( ∃ 𝑦  ∈  ℕ 𝐴  <  𝑦  →  ∃ 𝑦  ∈  ℤ 𝐴  <  𝑦 ) | 
						
							| 21 | 17 20 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ∃ 𝑦  ∈  ℤ 𝐴  <  𝑦 ) | 
						
							| 22 | 16 21 | jca | ⊢ ( 𝐴  ∈  ℝ  →  ( ∃ 𝑥  ∈  ℤ 𝑥  <  𝐴  ∧  ∃ 𝑦  ∈  ℤ 𝐴  <  𝑦 ) ) |