Metamath Proof Explorer


Theorem caovdilem

Description: Lemma used by real number construction. (Contributed by NM, 26-Aug-1995)

Ref Expression
Hypotheses caovdir.1 AV
caovdir.2 BV
caovdir.3 CV
caovdir.com xGy=yGx
caovdir.distr xGyFz=xGyFxGz
caovdl.4 DV
caovdl.5 HV
caovdl.ass xGyGz=xGyGz
Assertion caovdilem AGCFBGDGH=AGCGHFBGDGH

Proof

Step Hyp Ref Expression
1 caovdir.1 AV
2 caovdir.2 BV
3 caovdir.3 CV
4 caovdir.com xGy=yGx
5 caovdir.distr xGyFz=xGyFxGz
6 caovdl.4 DV
7 caovdl.5 HV
8 caovdl.ass xGyGz=xGyGz
9 ovex AGCV
10 ovex BGDV
11 9 10 7 4 5 caovdir AGCFBGDGH=AGCGHFBGDGH
12 1 3 7 8 caovass AGCGH=AGCGH
13 2 6 7 8 caovass BGDGH=BGDGH
14 12 13 oveq12i AGCGHFBGDGH=AGCGHFBGDGH
15 11 14 eqtri AGCFBGDGH=AGCGHFBGDGH