Metamath Proof Explorer


Theorem caovdirg

Description: Convert an operation reverse distributive law to class notation. (Contributed by Mario Carneiro, 19-Oct-2014)

Ref Expression
Hypothesis caovdirg.1 φxSySzKxFyGz=xGzHyGz
Assertion caovdirg φASBSCKAFBGC=AGCHBGC

Proof

Step Hyp Ref Expression
1 caovdirg.1 φxSySzKxFyGz=xGzHyGz
2 1 ralrimivvva φxSySzKxFyGz=xGzHyGz
3 oveq1 x=AxFy=AFy
4 3 oveq1d x=AxFyGz=AFyGz
5 oveq1 x=AxGz=AGz
6 5 oveq1d x=AxGzHyGz=AGzHyGz
7 4 6 eqeq12d x=AxFyGz=xGzHyGzAFyGz=AGzHyGz
8 oveq2 y=BAFy=AFB
9 8 oveq1d y=BAFyGz=AFBGz
10 oveq1 y=ByGz=BGz
11 10 oveq2d y=BAGzHyGz=AGzHBGz
12 9 11 eqeq12d y=BAFyGz=AGzHyGzAFBGz=AGzHBGz
13 oveq2 z=CAFBGz=AFBGC
14 oveq2 z=CAGz=AGC
15 oveq2 z=CBGz=BGC
16 14 15 oveq12d z=CAGzHBGz=AGCHBGC
17 13 16 eqeq12d z=CAFBGz=AGzHBGzAFBGC=AGCHBGC
18 7 12 17 rspc3v ASBSCKxSySzKxFyGz=xGzHyGzAFBGC=AGCHBGC
19 2 18 mpan9 φASBSCKAFBGC=AGCHBGC