Metamath Proof Explorer


Theorem caovord2d

Description: Operation ordering law with commuted arguments. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovordg.1 φxSySzSxRyzFxRzFy
caovordd.2 φAS
caovordd.3 φBS
caovordd.4 φCS
caovord2d.com φxSySxFy=yFx
Assertion caovord2d φARBAFCRBFC

Proof

Step Hyp Ref Expression
1 caovordg.1 φxSySzSxRyzFxRzFy
2 caovordd.2 φAS
3 caovordd.3 φBS
4 caovordd.4 φCS
5 caovord2d.com φxSySxFy=yFx
6 1 2 3 4 caovordd φARBCFARCFB
7 5 4 2 caovcomd φCFA=AFC
8 5 4 3 caovcomd φCFB=BFC
9 7 8 breq12d φCFARCFBAFCRBFC
10 6 9 bitrd φARBAFCRBFC