Metamath Proof Explorer


Theorem caragenss

Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis caragenss.1 S = CaraGen O
Assertion caragenss O OutMeas S dom O

Proof

Step Hyp Ref Expression
1 caragenss.1 S = CaraGen O
2 ssrab2 e 𝒫 dom O | a 𝒫 dom O O a e + 𝑒 O a e = O a 𝒫 dom O
3 2 a1i O OutMeas e 𝒫 dom O | a 𝒫 dom O O a e + 𝑒 O a e = O a 𝒫 dom O
4 1 a1i O OutMeas S = CaraGen O
5 caragenval O OutMeas CaraGen O = e 𝒫 dom O | a 𝒫 dom O O a e + 𝑒 O a e = O a
6 4 5 eqtrd O OutMeas S = e 𝒫 dom O | a 𝒫 dom O O a e + 𝑒 O a e = O a
7 omedm O OutMeas dom O = 𝒫 dom O
8 6 7 sseq12d O OutMeas S dom O e 𝒫 dom O | a 𝒫 dom O O a e + 𝑒 O a e = O a 𝒫 dom O
9 3 8 mpbird O OutMeas S dom O