Metamath Proof Explorer


Theorem carddom2

Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom , which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion carddom2 AdomcardBdomcardcardAcardBAB

Proof

Step Hyp Ref Expression
1 carddomi2 AdomcardBdomcardcardAcardBAB
2 brdom2 ABABAB
3 cardon cardAOn
4 3 onelssi cardBcardAcardBcardA
5 carddomi2 BdomcardAdomcardcardBcardABA
6 5 ancoms AdomcardBdomcardcardBcardABA
7 domnsym BA¬AB
8 4 6 7 syl56 AdomcardBdomcardcardBcardA¬AB
9 8 con2d AdomcardBdomcardAB¬cardBcardA
10 cardon cardBOn
11 ontri1 cardAOncardBOncardAcardB¬cardBcardA
12 3 10 11 mp2an cardAcardB¬cardBcardA
13 9 12 syl6ibr AdomcardBdomcardABcardAcardB
14 carden2b ABcardA=cardB
15 eqimss cardA=cardBcardAcardB
16 14 15 syl ABcardAcardB
17 16 a1i AdomcardBdomcardABcardAcardB
18 13 17 jaod AdomcardBdomcardABABcardAcardB
19 2 18 biimtrid AdomcardBdomcardABcardAcardB
20 1 19 impbid AdomcardBdomcardcardAcardBAB