Description: Two sets have the dominance relationship if their cardinalities have the subset relationship and one is numerable. See also carddom , which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013) (Revised by Mario Carneiro, 29-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | carddomi2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardnueq0 | |
|
2 | 1 | adantr | |
3 | 2 | biimpa | |
4 | 0domg | |
|
5 | 4 | ad2antlr | |
6 | 3 5 | eqbrtrd | |
7 | 6 | a1d | |
8 | fvex | |
|
9 | simprr | |
|
10 | ssdomg | |
|
11 | 8 9 10 | mpsyl | |
12 | cardid2 | |
|
13 | 12 | ad2antrr | |
14 | simprl | |
|
15 | ssn0 | |
|
16 | 9 14 15 | syl2anc | |
17 | ndmfv | |
|
18 | 17 | necon1ai | |
19 | cardid2 | |
|
20 | 16 18 19 | 3syl | |
21 | domen1 | |
|
22 | domen2 | |
|
23 | 21 22 | sylan9bb | |
24 | 13 20 23 | syl2anc | |
25 | 11 24 | mpbid | |
26 | 25 | expr | |
27 | 7 26 | pm2.61dane | |