Metamath Proof Explorer


Theorem carddomi2

Description: Two sets have the dominance relationship if their cardinalities have the subset relationship and one is numerable. See also carddom , which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion carddomi2 AdomcardBVcardAcardBAB

Proof

Step Hyp Ref Expression
1 cardnueq0 AdomcardcardA=A=
2 1 adantr AdomcardBVcardA=A=
3 2 biimpa AdomcardBVcardA=A=
4 0domg BVB
5 4 ad2antlr AdomcardBVcardA=B
6 3 5 eqbrtrd AdomcardBVcardA=AB
7 6 a1d AdomcardBVcardA=cardAcardBAB
8 fvex cardBV
9 simprr AdomcardBVcardAcardAcardBcardAcardB
10 ssdomg cardBVcardAcardBcardAcardB
11 8 9 10 mpsyl AdomcardBVcardAcardAcardBcardAcardB
12 cardid2 AdomcardcardAA
13 12 ad2antrr AdomcardBVcardAcardAcardBcardAA
14 simprl AdomcardBVcardAcardAcardBcardA
15 ssn0 cardAcardBcardAcardB
16 9 14 15 syl2anc AdomcardBVcardAcardAcardBcardB
17 ndmfv ¬BdomcardcardB=
18 17 necon1ai cardBBdomcard
19 cardid2 BdomcardcardBB
20 16 18 19 3syl AdomcardBVcardAcardAcardBcardBB
21 domen1 cardAAcardAcardBAcardB
22 domen2 cardBBAcardBAB
23 21 22 sylan9bb cardAAcardBBcardAcardBAB
24 13 20 23 syl2anc AdomcardBVcardAcardAcardBcardAcardBAB
25 11 24 mpbid AdomcardBVcardAcardAcardBAB
26 25 expr AdomcardBVcardAcardAcardBAB
27 7 26 pm2.61dane AdomcardBVcardAcardBAB