Metamath Proof Explorer


Theorem carden2a

Description: If two sets have equal nonzero cardinalities, then they are equinumerous. This assertion and carden2b are meant to replace carden in ZF without AC. (Contributed by Mario Carneiro, 9-Jan-2013)

Ref Expression
Assertion carden2a cardA=cardBcardAAB

Proof

Step Hyp Ref Expression
1 df-ne cardA¬cardA=
2 ndmfv ¬BdomcardcardB=
3 eqeq1 cardA=cardBcardA=cardB=
4 2 3 imbitrrid cardA=cardB¬BdomcardcardA=
5 4 con1d cardA=cardB¬cardA=Bdomcard
6 5 imp cardA=cardB¬cardA=Bdomcard
7 cardid2 BdomcardcardBB
8 6 7 syl cardA=cardB¬cardA=cardBB
9 breq2 cardA=cardBAcardAAcardB
10 entr AcardBcardBBAB
11 10 ex AcardBcardBBAB
12 9 11 syl6bi cardA=cardBAcardAcardBBAB
13 cardid2 AdomcardcardAA
14 ndmfv ¬AdomcardcardA=
15 13 14 nsyl4 ¬cardA=cardAA
16 15 ensymd ¬cardA=AcardA
17 12 16 impel cardA=cardB¬cardA=cardBBAB
18 8 17 mpd cardA=cardB¬cardA=AB
19 1 18 sylan2b cardA=cardBcardAAB