Description: Composition of non-empty hom-sets is non-empty. (Contributed by Zhi Wang, 18-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | catcocl.b | |
|
catcocl.h | |
||
catcocl.o | |
||
catcocl.c | |
||
catcocl.x | |
||
catcocl.y | |
||
catcocl.z | |
||
catcone0.f | |
||
catcone0.g | |
||
Assertion | catcone0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catcocl.b | |
|
2 | catcocl.h | |
|
3 | catcocl.o | |
|
4 | catcocl.c | |
|
5 | catcocl.x | |
|
6 | catcocl.y | |
|
7 | catcocl.z | |
|
8 | catcone0.f | |
|
9 | catcone0.g | |
|
10 | n0 | |
|
11 | n0 | |
|
12 | 10 11 | anbi12i | |
13 | exdistrv | |
|
14 | 12 13 | sylbb2 | |
15 | 8 9 14 | syl2anc | |
16 | 15 | ancli | |
17 | 19.42vv | |
|
18 | 17 | biimpri | |
19 | 4 | adantr | |
20 | 5 | adantr | |
21 | 6 | adantr | |
22 | 7 | adantr | |
23 | simprl | |
|
24 | simprr | |
|
25 | 1 2 3 19 20 21 22 23 24 | catcocl | |
26 | 25 | 2eximi | |
27 | 16 18 26 | 3syl | |
28 | ne0i | |
|
29 | 28 | exlimivv | |
30 | 27 29 | syl | |