Metamath Proof Explorer


Theorem catcone0

Description: Composition of non-empty hom-sets is non-empty. (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypotheses catcocl.b B=BaseC
catcocl.h H=HomC
catcocl.o ·˙=compC
catcocl.c φCCat
catcocl.x φXB
catcocl.y φYB
catcocl.z φZB
catcone0.f φXHY
catcone0.g φYHZ
Assertion catcone0 φXHZ

Proof

Step Hyp Ref Expression
1 catcocl.b B=BaseC
2 catcocl.h H=HomC
3 catcocl.o ·˙=compC
4 catcocl.c φCCat
5 catcocl.x φXB
6 catcocl.y φYB
7 catcocl.z φZB
8 catcone0.f φXHY
9 catcone0.g φYHZ
10 n0 XHYffXHY
11 n0 YHZggYHZ
12 10 11 anbi12i XHYYHZffXHYggYHZ
13 exdistrv fgfXHYgYHZffXHYggYHZ
14 12 13 sylbb2 XHYYHZfgfXHYgYHZ
15 8 9 14 syl2anc φfgfXHYgYHZ
16 15 ancli φφfgfXHYgYHZ
17 19.42vv fgφfXHYgYHZφfgfXHYgYHZ
18 17 biimpri φfgfXHYgYHZfgφfXHYgYHZ
19 4 adantr φfXHYgYHZCCat
20 5 adantr φfXHYgYHZXB
21 6 adantr φfXHYgYHZYB
22 7 adantr φfXHYgYHZZB
23 simprl φfXHYgYHZfXHY
24 simprr φfXHYgYHZgYHZ
25 1 2 3 19 20 21 22 23 24 catcocl φfXHYgYHZgXY·˙ZfXHZ
26 25 2eximi fgφfXHYgYHZfggXY·˙ZfXHZ
27 16 18 26 3syl φfggXY·˙ZfXHZ
28 ne0i gXY·˙ZfXHZXHZ
29 28 exlimivv fggXY·˙ZfXHZXHZ
30 27 29 syl φXHZ