Metamath Proof Explorer


Theorem catprsc

Description: A construction of the preorder induced by a category. See catprs2 for details. See also catprsc2 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypothesis catprsc.1 φ˙=xy|xByBxHy
Assertion catprsc φzBwBz˙wzHw

Proof

Step Hyp Ref Expression
1 catprsc.1 φ˙=xy|xByBxHy
2 1 breqd φz˙wzxy|xByBxHyw
3 vex zV
4 vex wV
5 simpl x=zy=wx=z
6 5 eleq1d x=zy=wxBzB
7 simpr x=zy=wy=w
8 7 eleq1d x=zy=wyBwB
9 oveq12 x=zy=wxHy=zHw
10 9 neeq1d x=zy=wxHyzHw
11 6 8 10 3anbi123d x=zy=wxByBxHyzBwBzHw
12 df-3an zBwBzHwzBwBzHw
13 11 12 bitrdi x=zy=wxByBxHyzBwBzHw
14 eqid xy|xByBxHy=xy|xByBxHy
15 3 4 13 14 braba zxy|xByBxHywzBwBzHw
16 2 15 bitrdi φz˙wzBwBzHw
17 16 baibd φzBwBz˙wzHw
18 17 ralrimivva φzBwBz˙wzHw