Metamath Proof Explorer


Theorem cbv1h

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 11-May-1993) (Proof shortened by Wolf Lammen, 13-May-2018) (New usage is discouraged.)

Ref Expression
Hypotheses cbv1h.1 φψyψ
cbv1h.2 φχxχ
cbv1h.3 φx=yψχ
Assertion cbv1h xyφxψyχ

Proof

Step Hyp Ref Expression
1 cbv1h.1 φψyψ
2 cbv1h.2 φχxχ
3 cbv1h.3 φx=yψχ
4 nfa1 xxyφ
5 nfa2 yxyφ
6 2sp xyφφ
7 6 1 syl xyφψyψ
8 5 7 nf5d xyφyψ
9 6 2 syl xyφχxχ
10 4 9 nf5d xyφxχ
11 6 3 syl xyφx=yψχ
12 4 5 8 10 11 cbv1 xyφxψyχ