Metamath Proof Explorer


Theorem cbval2

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbval2v if possible. (Contributed by NM, 22-Dec-2003) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 11-Sep-2023) (New usage is discouraged.)

Ref Expression
Hypotheses cbval2.1 zφ
cbval2.2 wφ
cbval2.3 xψ
cbval2.4 yψ
cbval2.5 x=zy=wφψ
Assertion cbval2 xyφzwψ

Proof

Step Hyp Ref Expression
1 cbval2.1 zφ
2 cbval2.2 wφ
3 cbval2.3 xψ
4 cbval2.4 yψ
5 cbval2.5 x=zy=wφψ
6 1 nfal zyφ
7 3 nfal xwψ
8 nfv yx=z
9 nfv wx=z
10 2 a1i x=zwφ
11 4 a1i x=zyψ
12 5 ex x=zy=wφψ
13 8 9 10 11 12 cbv2 x=zyφwψ
14 6 7 13 cbval xyφzwψ