Metamath Proof Explorer


Theorem cbvmpo1davw2

Description: Change first bound variable and domains in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvmpo1davw2.1 φ x = z E = F
cbvmpo1davw2.2 φ x = z C = D
cbvmpo1davw2.3 φ x = z A = B
Assertion cbvmpo1davw2 φ x A , y C E = z B , y D F

Proof

Step Hyp Ref Expression
1 cbvmpo1davw2.1 φ x = z E = F
2 cbvmpo1davw2.2 φ x = z C = D
3 cbvmpo1davw2.3 φ x = z A = B
4 simpr φ x = z x = z
5 4 3 eleq12d φ x = z x A z B
6 2 eleq2d φ x = z y C y D
7 5 6 anbi12d φ x = z x A y C z B y D
8 1 eqeq2d φ x = z t = E t = F
9 7 8 anbi12d φ x = z x A y C t = E z B y D t = F
10 9 cbvoprab1davw φ x y t | x A y C t = E = z y t | z B y D t = F
11 df-mpo x A , y C E = x y t | x A y C t = E
12 df-mpo z B , y D F = z y t | z B y D t = F
13 10 11 12 3eqtr4g φ x A , y C E = z B , y D F