Metamath Proof Explorer


Theorem cbvmptvw2

Description: Change bound variable and domain in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvmptvw2.1 x = y C = D
cbvmptvw2.2 x = y A = B
Assertion cbvmptvw2 x A C = y B D

Proof

Step Hyp Ref Expression
1 cbvmptvw2.1 x = y C = D
2 cbvmptvw2.2 x = y A = B
3 eleq1w x = y x A y A
4 2 eleq2d x = y y A y B
5 3 4 bitrd x = y x A y B
6 1 eqeq2d x = y t = C t = D
7 5 6 anbi12d x = y x A t = C y B t = D
8 7 cbvopab1v x t | x A t = C = y t | y B t = D
9 df-mpt x A C = x t | x A t = C
10 df-mpt y B D = y t | y B t = D
11 8 9 10 3eqtr4i x A C = y B D