Metamath Proof Explorer


Theorem cbvopab1

Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004) (Revised by Mario Carneiro, 14-Oct-2016) Add disjoint variable condition to avoid ax-13 . See cbvopab1g for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024)

Ref Expression
Hypotheses cbvopab1.1 zφ
cbvopab1.2 xψ
cbvopab1.3 x=zφψ
Assertion cbvopab1 xy|φ=zy|ψ

Proof

Step Hyp Ref Expression
1 cbvopab1.1 zφ
2 cbvopab1.2 xψ
3 cbvopab1.3 x=zφψ
4 nfv vyw=xyφ
5 nfv xw=vy
6 nfs1v xvxφ
7 5 6 nfan xw=vyvxφ
8 7 nfex xyw=vyvxφ
9 opeq1 x=vxy=vy
10 9 eqeq2d x=vw=xyw=vy
11 sbequ12 x=vφvxφ
12 10 11 anbi12d x=vw=xyφw=vyvxφ
13 12 exbidv x=vyw=xyφyw=vyvxφ
14 4 8 13 cbvexv1 xyw=xyφvyw=vyvxφ
15 nfv zw=vy
16 1 nfsbv zvxφ
17 15 16 nfan zw=vyvxφ
18 17 nfex zyw=vyvxφ
19 nfv vyw=zyψ
20 opeq1 v=zvy=zy
21 20 eqeq2d v=zw=vyw=zy
22 2 3 sbhypf v=zvxφψ
23 21 22 anbi12d v=zw=vyvxφw=zyψ
24 23 exbidv v=zyw=vyvxφyw=zyψ
25 18 19 24 cbvexv1 vyw=vyvxφzyw=zyψ
26 14 25 bitri xyw=xyφzyw=zyψ
27 26 abbii w|xyw=xyφ=w|zyw=zyψ
28 df-opab xy|φ=w|xyw=xyφ
29 df-opab zy|ψ=w|zyw=zyψ
30 27 28 29 3eqtr4i xy|φ=zy|ψ