Metamath Proof Explorer


Theorem cbvopab1v

Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003) (Proof shortened by Eric Schmidt, 4-Apr-2007) Reduce axiom usage. (Revised by Gino Giotto, 17-Nov-2024)

Ref Expression
Hypothesis cbvopab1v.1 x = z φ ψ
Assertion cbvopab1v x y | φ = z y | ψ

Proof

Step Hyp Ref Expression
1 cbvopab1v.1 x = z φ ψ
2 opeq1 x = z x y = z y
3 2 eqeq2d x = z w = x y w = z y
4 3 1 anbi12d x = z w = x y φ w = z y ψ
5 4 exbidv x = z y w = x y φ y w = z y ψ
6 5 cbvexvw x y w = x y φ z y w = z y ψ
7 6 abbii w | x y w = x y φ = w | z y w = z y ψ
8 df-opab x y | φ = w | x y w = x y φ
9 df-opab z y | ψ = w | z y w = z y ψ
10 7 8 9 3eqtr4i x y | φ = z y | ψ