Metamath Proof Explorer


Theorem cbvoprab12

Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Hypotheses cbvoprab12.1 w φ
cbvoprab12.2 v φ
cbvoprab12.3 x ψ
cbvoprab12.4 y ψ
cbvoprab12.5 x = w y = v φ ψ
Assertion cbvoprab12 x y z | φ = w v z | ψ

Proof

Step Hyp Ref Expression
1 cbvoprab12.1 w φ
2 cbvoprab12.2 v φ
3 cbvoprab12.3 x ψ
4 cbvoprab12.4 y ψ
5 cbvoprab12.5 x = w y = v φ ψ
6 nfv w u = x y
7 6 1 nfan w u = x y φ
8 nfv v u = x y
9 8 2 nfan v u = x y φ
10 nfv x u = w v
11 10 3 nfan x u = w v ψ
12 nfv y u = w v
13 12 4 nfan y u = w v ψ
14 opeq12 x = w y = v x y = w v
15 14 eqeq2d x = w y = v u = x y u = w v
16 15 5 anbi12d x = w y = v u = x y φ u = w v ψ
17 7 9 11 13 16 cbvex2v x y u = x y φ w v u = w v ψ
18 17 opabbii u z | x y u = x y φ = u z | w v u = w v ψ
19 dfoprab2 x y z | φ = u z | x y u = x y φ
20 dfoprab2 w v z | ψ = u z | w v u = w v ψ
21 18 19 20 3eqtr4i x y z | φ = w v z | ψ