Metamath Proof Explorer


Theorem cbvoprab12davw

Description: Change the first and second bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab12davw.1 φ x = w y = v ψ χ
Assertion cbvoprab12davw φ x y z | ψ = w v z | χ

Proof

Step Hyp Ref Expression
1 cbvoprab12davw.1 φ x = w y = v ψ χ
2 simplr φ x = w y = v x = w
3 simpr φ x = w y = v y = v
4 2 3 opeq12d φ x = w y = v x y = w v
5 4 opeq1d φ x = w y = v x y z = w v z
6 5 eqeq2d φ x = w y = v t = x y z t = w v z
7 6 1 anbi12d φ x = w y = v t = x y z ψ t = w v z χ
8 7 exbidv φ x = w y = v z t = x y z ψ z t = w v z χ
9 8 cbvexdvaw φ x = w y z t = x y z ψ v z t = w v z χ
10 9 cbvexdvaw φ x y z t = x y z ψ w v z t = w v z χ
11 10 abbidv φ t | x y z t = x y z ψ = t | w v z t = w v z χ
12 df-oprab x y z | ψ = t | x y z t = x y z ψ
13 df-oprab w v z | χ = t | w v z t = w v z χ
14 11 12 13 3eqtr4g φ x y z | ψ = w v z | χ