Metamath Proof Explorer


Theorem cbvoprab3davw

Description: Change the third bound variable in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab3davw.1 φ z = w ψ χ
Assertion cbvoprab3davw φ x y z | ψ = x y w | χ

Proof

Step Hyp Ref Expression
1 cbvoprab3davw.1 φ z = w ψ χ
2 simpr φ z = w z = w
3 2 opeq2d φ z = w x y z = x y w
4 3 eqeq2d φ z = w t = x y z t = x y w
5 4 1 anbi12d φ z = w t = x y z ψ t = x y w χ
6 5 cbvexdvaw φ z t = x y z ψ w t = x y w χ
7 6 2exbidv φ x y z t = x y z ψ x y w t = x y w χ
8 7 abbidv φ t | x y z t = x y z ψ = t | x y w t = x y w χ
9 df-oprab x y z | ψ = t | x y z t = x y z ψ
10 df-oprab x y w | χ = t | x y w t = x y w χ
11 8 9 10 3eqtr4g φ x y z | ψ = x y w | χ