Metamath Proof Explorer


Theorem cbvreudavw2

Description: Change bound variable and quantifier domain in the restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvreudavw2.1 φ x = y ψ χ
cbvreudavw2.2 φ x = y A = B
Assertion cbvreudavw2 φ ∃! x A ψ ∃! y B χ

Proof

Step Hyp Ref Expression
1 cbvreudavw2.1 φ x = y ψ χ
2 cbvreudavw2.2 φ x = y A = B
3 simpr φ x = y x = y
4 3 2 eleq12d φ x = y x A y B
5 4 1 anbi12d φ x = y x A ψ y B χ
6 5 cbveudavw φ ∃! x x A ψ ∃! y y B χ
7 df-reu ∃! x A ψ ∃! x x A ψ
8 df-reu ∃! y B χ ∃! y y B χ
9 6 7 8 3bitr4g φ ∃! x A ψ ∃! y B χ