Metamath Proof Explorer


Theorem cbvreuvw2

Description: Change bound variable and domain in the restricted existential uniqueness quantifier, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvreuvw2.1 x = y A = B
cbvreuvw2.2 x = y φ ψ
Assertion cbvreuvw2 ∃! x A φ ∃! y B ψ

Proof

Step Hyp Ref Expression
1 cbvreuvw2.1 x = y A = B
2 cbvreuvw2.2 x = y φ ψ
3 eleq1w x = y x A y A
4 1 eleq2d x = y y A y B
5 3 4 bitrd x = y x A y B
6 5 2 anbi12d x = y x A φ y B ψ
7 6 cbveuvw ∃! x x A φ ∃! y y B ψ
8 df-reu ∃! x A φ ∃! x x A φ
9 df-reu ∃! y B ψ ∃! y y B ψ
10 7 8 9 3bitr4i ∃! x A φ ∃! y B ψ