Metamath Proof Explorer


Theorem cbvriotavw

Description: Change bound variable in a restricted description binder. Version of cbvriotav with a disjoint variable condition, which requires fewer axioms . (Contributed by NM, 18-Mar-2013) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbvriotavw.1 x=yφψ
Assertion cbvriotavw ιxA|φ=ιyA|ψ

Proof

Step Hyp Ref Expression
1 cbvriotavw.1 x=yφψ
2 eleq1w x=yxAyA
3 2 1 anbi12d x=yxAφyAψ
4 3 cbviotavw ιx|xAφ=ιy|yAψ
5 df-riota ιxA|φ=ιx|xAφ
6 df-riota ιyA|ψ=ιy|yAψ
7 4 5 6 3eqtr4i ιxA|φ=ιyA|ψ