Metamath Proof Explorer


Theorem cbvsbdavw2

Description: Change bound variable in proper substitution. General version of cbvsbdavw . Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvsbdavw2.1 φ z = w
cbvsbdavw2.2 φ x = y ψ χ
Assertion cbvsbdavw2 φ z x ψ w y χ

Proof

Step Hyp Ref Expression
1 cbvsbdavw2.1 φ z = w
2 cbvsbdavw2.2 φ x = y ψ χ
3 equequ2 z = w t = z t = w
4 1 3 syl φ t = z t = w
5 equequ1 x = y x = t y = t
6 5 adantl φ x = y x = t y = t
7 6 2 imbi12d φ x = y x = t ψ y = t χ
8 7 cbvaldvaw φ x x = t ψ y y = t χ
9 4 8 imbi12d φ t = z x x = t ψ t = w y y = t χ
10 9 albidv φ t t = z x x = t ψ t t = w y y = t χ
11 df-sb z x ψ t t = z x x = t ψ
12 df-sb w y χ t t = w y y = t χ
13 10 11 12 3bitr4g φ z x ψ w y χ