Metamath Proof Explorer


Theorem cdleme20g

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114, antepenultimate line. D , F , Y , G represent s_2, f(s), t_2, f(t). (Contributed by NM, 18-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙=K
cdleme19.j ˙=joinK
cdleme19.m ˙=meetK
cdleme19.a A=AtomsK
cdleme19.h H=LHypK
cdleme19.u U=P˙Q˙W
cdleme19.f F=S˙U˙Q˙P˙S˙W
cdleme19.g G=T˙U˙Q˙P˙T˙W
cdleme19.d D=R˙S˙W
cdleme19.y Y=R˙T˙W
cdleme20.v V=S˙T˙W
Assertion cdleme20g KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QD˙S˙Y˙T˙S˙F˙T˙G=S˙R˙T˙R˙S˙U˙T˙U

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙=K
2 cdleme19.j ˙=joinK
3 cdleme19.m ˙=meetK
4 cdleme19.a A=AtomsK
5 cdleme19.h H=LHypK
6 cdleme19.u U=P˙Q˙W
7 cdleme19.f F=S˙U˙Q˙P˙S˙W
8 cdleme19.g G=T˙U˙Q˙P˙T˙W
9 cdleme19.d D=R˙S˙W
10 cdleme19.y Y=R˙T˙W
11 cdleme20.v V=S˙T˙W
12 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QKHL
13 simp11r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QWH
14 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QSA
15 simp21r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬S˙W
16 simp23l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QRA
17 simp33 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙P˙Q
18 simp32l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬S˙P˙Q
19 1 2 3 4 5 9 cdlemeda KHLWHSA¬S˙WRAR˙P˙Q¬S˙P˙QDA
20 12 13 14 15 16 17 18 19 syl223anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QDA
21 2 4 hlatjcom KHLDASAD˙S=S˙D
22 12 20 14 21 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QD˙S=S˙D
23 1 2 3 4 5 9 cdleme10 KHLWHRASA¬S˙WS˙D=S˙R
24 12 13 16 14 15 23 syl212anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QS˙D=S˙R
25 22 24 eqtrd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QD˙S=S˙R
26 simp22l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QTA
27 simp22r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬T˙W
28 simp32r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬T˙P˙Q
29 1 2 3 4 5 10 cdlemeda KHLWHTA¬T˙WRAR˙P˙Q¬T˙P˙QYA
30 12 13 26 27 16 17 28 29 syl223anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QYA
31 2 4 hlatjcom KHLYATAY˙T=T˙Y
32 12 30 26 31 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QY˙T=T˙Y
33 1 2 3 4 5 10 cdleme10 KHLWHRATA¬T˙WT˙Y=T˙R
34 12 13 16 26 27 33 syl212anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QT˙Y=T˙R
35 32 34 eqtrd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QY˙T=T˙R
36 25 35 oveq12d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QD˙S˙Y˙T=S˙R˙T˙R
37 simp12l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QPA
38 simp13l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QQA
39 simp21 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QSA¬S˙W
40 1 2 3 4 5 6 7 cdleme1 KHLWHPAQASA¬S˙WS˙F=S˙U
41 12 13 37 38 39 40 syl23anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QS˙F=S˙U
42 simp22 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QTA¬T˙W
43 1 2 3 4 5 6 8 cdleme1 KHLWHPAQATA¬T˙WT˙G=T˙U
44 12 13 37 38 42 43 syl23anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QT˙G=T˙U
45 41 44 oveq12d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QS˙F˙T˙G=S˙U˙T˙U
46 36 45 oveq12d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QD˙S˙Y˙T˙S˙F˙T˙G=S˙R˙T˙R˙S˙U˙T˙U