Metamath Proof Explorer


Theorem cdleme21

Description: Part of proof of Lemma E in Crawley p. 113, 3rd line on p. 115. D , F , N , Y , G , O represent s_2, f(s), f_s(r), t_2, f(t), f_t(r) respectively. Combine cdleme18d and cdleme21j to eliminate existence condition, proving f_s(r) = f_t(r) with fewer conditions. (Contributed by NM, 29-Nov-2012)

Ref Expression
Hypotheses cdleme21.l ˙=K
cdleme21.j ˙=joinK
cdleme21.m ˙=meetK
cdleme21.a A=AtomsK
cdleme21.h H=LHypK
cdleme21.u U=P˙Q˙W
cdleme21.f F=S˙U˙Q˙P˙S˙W
cdleme21g.g G=T˙U˙Q˙P˙T˙W
cdleme21g.d D=R˙S˙W
cdleme21g.y Y=R˙T˙W
cdleme21g.n N=P˙Q˙F˙D
cdleme21g.o O=P˙Q˙G˙Y
Assertion cdleme21 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QN=O

Proof

Step Hyp Ref Expression
1 cdleme21.l ˙=K
2 cdleme21.j ˙=joinK
3 cdleme21.m ˙=meetK
4 cdleme21.a A=AtomsK
5 cdleme21.h H=LHypK
6 cdleme21.u U=P˙Q˙W
7 cdleme21.f F=S˙U˙Q˙P˙S˙W
8 cdleme21g.g G=T˙U˙Q˙P˙T˙W
9 cdleme21g.d D=R˙S˙W
10 cdleme21g.y Y=R˙T˙W
11 cdleme21g.n N=P˙Q˙F˙D
12 cdleme21g.o O=P˙Q˙G˙Y
13 simpl1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rKHLWHPA¬P˙WQA¬Q˙W
14 simpl2 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rRA¬R˙WSA¬S˙WTA¬T˙W
15 simpl3l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rPQST
16 simpl3r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙r¬S˙P˙Q¬T˙P˙QR˙P˙Q
17 simpr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rrA¬r˙WP˙r=Q˙r
18 1 2 3 4 5 6 7 8 9 10 11 12 cdleme21j KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rN=O
19 13 14 15 16 17 18 syl113anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rN=O
20 simpl1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬rA¬r˙WP˙r=Q˙rKHLWHPA¬P˙WQA¬Q˙W
21 simpl2 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬rA¬r˙WP˙r=Q˙rRA¬R˙WSA¬S˙WTA¬T˙W
22 simp3ll KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QPQ
23 22 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬rA¬r˙WP˙r=Q˙rPQ
24 simp3r3 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙P˙Q
25 simp3r1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬S˙P˙Q
26 simp3r2 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬T˙P˙Q
27 24 25 26 3jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙P˙Q¬S˙P˙Q¬T˙P˙Q
28 27 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬rA¬r˙WP˙r=Q˙rR˙P˙Q¬S˙P˙Q¬T˙P˙Q
29 simpr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WP˙r=Q˙r
30 9 oveq2i F˙D=F˙R˙S˙W
31 30 oveq2i P˙Q˙F˙D=P˙Q˙F˙R˙S˙W
32 11 31 eqtri N=P˙Q˙F˙R˙S˙W
33 10 oveq2i G˙Y=G˙R˙T˙W
34 33 oveq2i P˙Q˙G˙Y=P˙Q˙G˙R˙T˙W
35 12 34 eqtri O=P˙Q˙G˙R˙T˙W
36 1 2 3 4 5 6 7 32 8 35 cdleme18d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rN=O
37 20 21 23 28 29 36 syl113anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬rA¬r˙WP˙r=Q˙rN=O
38 19 37 pm2.61dan KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QN=O