Metamath Proof Explorer


Theorem cdleme21e

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 115, 3rd line. Y , G , O , E , B , Z represent s_2, f(s), f_s(r), z_2, f(z), f_z(r) respectively. We prove that if u <_ s \/ z, then f_t(r) = f_z(r). (Contributed by NM, 29-Nov-2012)

Ref Expression
Hypotheses cdleme21.l ˙=K
cdleme21.j ˙=joinK
cdleme21.m ˙=meetK
cdleme21.a A=AtomsK
cdleme21.h H=LHypK
cdleme21.u U=P˙Q˙W
cdleme21.f F=S˙U˙Q˙P˙S˙W
cdleme21.b B=z˙U˙Q˙P˙z˙W
cdleme21.d D=R˙S˙W
cdleme21.e E=R˙z˙W
cdleme21d.n N=P˙Q˙F˙D
cdleme21d.z Z=P˙Q˙B˙E
cdleme21.g G=T˙U˙Q˙P˙T˙W
cdleme21.y Y=R˙T˙W
cdleme21.o O=P˙Q˙G˙Y
Assertion cdleme21e KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zO=Z

Proof

Step Hyp Ref Expression
1 cdleme21.l ˙=K
2 cdleme21.j ˙=joinK
3 cdleme21.m ˙=meetK
4 cdleme21.a A=AtomsK
5 cdleme21.h H=LHypK
6 cdleme21.u U=P˙Q˙W
7 cdleme21.f F=S˙U˙Q˙P˙S˙W
8 cdleme21.b B=z˙U˙Q˙P˙z˙W
9 cdleme21.d D=R˙S˙W
10 cdleme21.e E=R˙z˙W
11 cdleme21d.n N=P˙Q˙F˙D
12 cdleme21d.z Z=P˙Q˙B˙E
13 cdleme21.g G=T˙U˙Q˙P˙T˙W
14 cdleme21.y Y=R˙T˙W
15 cdleme21.o O=P˙Q˙G˙Y
16 simp11 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zKHLWH
17 simp12 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zPA¬P˙W
18 simp13 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zQA¬Q˙W
19 simp31 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zRA¬R˙W
20 simp22 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zTA¬T˙W
21 simp33l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zzA¬z˙W
22 simp231 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zPQ
23 simp13l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zQA
24 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zSA
25 simp232 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙z¬S˙P˙Q
26 24 22 25 3jca KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zSAPQ¬S˙P˙Q
27 simp32r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zU˙S˙T
28 21 simpld KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zzA
29 simp33r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zP˙z=S˙z
30 1 2 3 4 5 6 cdleme21at KHLWHPA¬P˙WQASAPQ¬S˙P˙QU˙S˙TzAP˙z=S˙zTz
31 16 17 23 26 27 28 29 30 syl322anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zTz
32 22 31 jca KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zPQTz
33 simp233 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙z¬T˙P˙Q
34 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zKHL
35 simp12l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zPA
36 1 2 4 cdleme21b KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙z¬z˙P˙Q
37 34 35 23 24 22 25 28 29 36 syl332anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙z¬z˙P˙Q
38 simp32l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zR˙P˙Q
39 33 37 38 3jca KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙z¬T˙P˙Q¬z˙P˙QR˙P˙Q
40 simp21 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zSA¬S˙W
41 22 25 27 3jca KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zPQ¬S˙P˙QU˙S˙T
42 1 2 3 4 5 6 cdleme21ct KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙z¬U˙T˙z
43 16 17 23 40 20 41 21 29 42 syl332anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙z¬U˙T˙z
44 eqid T˙z˙W=T˙z˙W
45 1 2 3 4 5 6 13 8 14 10 44 15 12 cdleme20 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WTA¬T˙WzA¬z˙WPQTz¬T˙P˙Q¬z˙P˙QR˙P˙Q¬U˙T˙zO=Z
46 16 17 18 19 20 21 32 39 43 45 syl333anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zO=Z