Metamath Proof Explorer


Theorem cdleme21j

Description: Combine cdleme20 and cdleme21i to eliminate U .<_ ( S .\/ T ) condition. (Contributed by NM, 29-Nov-2012)

Ref Expression
Hypotheses cdleme21.l ˙=K
cdleme21.j ˙=joinK
cdleme21.m ˙=meetK
cdleme21.a A=AtomsK
cdleme21.h H=LHypK
cdleme21.u U=P˙Q˙W
cdleme21.f F=S˙U˙Q˙P˙S˙W
cdleme21g.g G=T˙U˙Q˙P˙T˙W
cdleme21g.d D=R˙S˙W
cdleme21g.y Y=R˙T˙W
cdleme21g.n N=P˙Q˙F˙D
cdleme21g.o O=P˙Q˙G˙Y
Assertion cdleme21j KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rN=O

Proof

Step Hyp Ref Expression
1 cdleme21.l ˙=K
2 cdleme21.j ˙=joinK
3 cdleme21.m ˙=meetK
4 cdleme21.a A=AtomsK
5 cdleme21.h H=LHypK
6 cdleme21.u U=P˙Q˙W
7 cdleme21.f F=S˙U˙Q˙P˙S˙W
8 cdleme21g.g G=T˙U˙Q˙P˙T˙W
9 cdleme21g.d D=R˙S˙W
10 cdleme21g.y Y=R˙T˙W
11 cdleme21g.n N=P˙Q˙F˙D
12 cdleme21g.o O=P˙Q˙G˙Y
13 simpl33 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rU˙S˙TrA¬r˙WP˙r=Q˙r
14 simpl1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rU˙S˙TKHLWHPA¬P˙WQA¬Q˙W
15 simp22 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rSA¬S˙W
16 simp23 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rTA¬T˙W
17 simp31l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rPQ
18 simp321 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙r¬S˙P˙Q
19 simp322 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙r¬T˙P˙Q
20 17 18 19 3jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rPQ¬S˙P˙Q¬T˙P˙Q
21 15 16 20 3jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙Q
22 21 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rU˙S˙TSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙Q
23 simpl21 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rU˙S˙TRA¬R˙W
24 simp323 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rR˙P˙Q
25 24 anim1i KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rU˙S˙TR˙P˙QU˙S˙T
26 1 2 3 4 5 6 7 8 9 10 11 12 cdleme21i KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQ¬S˙P˙Q¬T˙P˙QRA¬R˙WR˙P˙QU˙S˙TrA¬r˙WP˙r=Q˙rN=O
27 14 22 23 25 26 syl112anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rU˙S˙TrA¬r˙WP˙r=Q˙rN=O
28 13 27 mpd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rU˙S˙TN=O
29 simpl1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙r¬U˙S˙TKHLWHPA¬P˙WQA¬Q˙W
30 simpl2 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙r¬U˙S˙TRA¬R˙WSA¬S˙WTA¬T˙W
31 simpl31 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙r¬U˙S˙TPQST
32 simpl32 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙r¬U˙S˙T¬S˙P˙Q¬T˙P˙QR˙P˙Q
33 simpr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙r¬U˙S˙T¬U˙S˙T
34 eqid S˙T˙W=S˙T˙W
35 1 2 3 4 5 6 7 8 9 10 34 11 12 cdleme20 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬U˙S˙TN=O
36 29 30 31 32 33 35 syl113anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙r¬U˙S˙TN=O
37 28 36 pm2.61dan KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QrA¬r˙WP˙r=Q˙rN=O