Metamath Proof Explorer


Theorem cdleme26e

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 4th line on p. 115. F , N , O represent f(z), f_z(s), f_z(t) respectively. When t \/ v = p \/ q, f_z(s) <_ f_z(t) \/ v. TODO: FIX COMMENT. (Contributed by NM, 2-Feb-2013)

Ref Expression
Hypotheses cdleme26.b B=BaseK
cdleme26.l ˙=K
cdleme26.j ˙=joinK
cdleme26.m ˙=meetK
cdleme26.a A=AtomsK
cdleme26.h H=LHypK
cdleme26e.u U=P˙Q˙W
cdleme26e.f F=z˙U˙Q˙P˙z˙W
cdleme26e.n N=P˙Q˙F˙S˙z˙W
cdleme26e.o O=P˙Q˙F˙T˙z˙W
cdleme26e.i I=ιuB|zA¬z˙W¬z˙P˙Qu=N
cdleme26e.e E=ιuB|zA¬z˙W¬z˙P˙Qu=O
Assertion cdleme26e KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WI˙E˙V

Proof

Step Hyp Ref Expression
1 cdleme26.b B=BaseK
2 cdleme26.l ˙=K
3 cdleme26.j ˙=joinK
4 cdleme26.m ˙=meetK
5 cdleme26.a A=AtomsK
6 cdleme26.h H=LHypK
7 cdleme26e.u U=P˙Q˙W
8 cdleme26e.f F=z˙U˙Q˙P˙z˙W
9 cdleme26e.n N=P˙Q˙F˙S˙z˙W
10 cdleme26e.o O=P˙Q˙F˙T˙z˙W
11 cdleme26e.i I=ιuB|zA¬z˙W¬z˙P˙Qu=N
12 cdleme26e.e E=ιuB|zA¬z˙W¬z˙P˙Qu=O
13 simp11 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WKHLWH
14 simp12 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WPA¬P˙W
15 simp13 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WQA¬Q˙W
16 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WSA
17 simp22l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WTA
18 16 17 jca KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WSATA
19 simp23 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WVAV˙W
20 simp311 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WPQ
21 simp32l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WT˙V=P˙Q
22 20 21 jca KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WPQT˙V=P˙Q
23 simp33 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WzA¬z˙W
24 2 3 4 5 6 7 8 9 10 cdleme22e KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WN˙O˙V
25 13 14 15 18 19 22 23 24 syl133anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WN˙O˙V
26 simp21r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙W¬S˙W
27 simp312 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WS˙P˙Q
28 1 2 3 4 5 6 7 8 9 11 cdleme25cl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQS˙P˙QIB
29 13 14 15 16 26 20 27 28 syl322anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WIB
30 simp33l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WzA
31 simp33r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙W¬z˙W
32 simp32r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙W¬z˙P˙Q
33 31 32 jca KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙W¬z˙W¬z˙P˙Q
34 1 fvexi BV
35 34 11 riotasv IBzA¬z˙W¬z˙P˙QI=N
36 29 30 33 35 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WI=N
37 simp22r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙W¬T˙W
38 simp313 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WT˙P˙Q
39 1 2 3 4 5 6 7 8 10 12 cdleme25cl KHLWHPA¬P˙WQA¬Q˙WTA¬T˙WPQT˙P˙QEB
40 13 14 15 17 37 20 38 39 syl322anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WEB
41 34 12 riotasv EBzA¬z˙W¬z˙P˙QE=O
42 40 30 33 41 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WE=O
43 42 oveq1d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WE˙V=O˙V
44 25 36 43 3brtr4d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WI˙E˙V