Metamath Proof Explorer


Theorem cdleme26f2ALTN

Description: Part of proof of Lemma E in Crawley p. 113. cdleme26fALTN with s and t swapped (this case is not mentioned by them). If s <_ t \/ v, then f(s) <_ f_s(t) \/ v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme26.b B=BaseK
cdleme26.l ˙=K
cdleme26.j ˙=joinK
cdleme26.m ˙=meetK
cdleme26.a A=AtomsK
cdleme26.h H=LHypK
cdleme26f2.u U=P˙Q˙W
cdleme26f2.f G=s˙U˙Q˙P˙s˙W
cdleme26f2.n O=P˙Q˙G˙T˙s˙W
cdleme26f2.e E=ιuB|sA¬s˙W¬s˙P˙Qu=O
Assertion cdleme26f2ALTN KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WG˙E˙V

Proof

Step Hyp Ref Expression
1 cdleme26.b B=BaseK
2 cdleme26.l ˙=K
3 cdleme26.j ˙=joinK
4 cdleme26.m ˙=meetK
5 cdleme26.a A=AtomsK
6 cdleme26.h H=LHypK
7 cdleme26f2.u U=P˙Q˙W
8 cdleme26f2.f G=s˙U˙Q˙P˙s˙W
9 cdleme26f2.n O=P˙Q˙G˙T˙s˙W
10 cdleme26f2.e E=ιuB|sA¬s˙W¬s˙P˙Qu=O
11 simp11 KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WKHLWH
12 simp23 KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WTA¬T˙W
13 simp31r KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙W¬s˙P˙Q
14 simp12r KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WT˙P˙Q
15 simp12l KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WPQ
16 13 14 15 3jca KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙W¬s˙P˙QT˙P˙QPQ
17 simp21 KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WPA¬P˙W
18 simp22 KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WQA¬Q˙W
19 simp13 KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WsA¬s˙W
20 simp32 KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WsTs˙T˙V
21 simp33 KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WVAV˙W
22 2 3 4 5 6 7 8 9 cdleme22f2 KHLWHTA¬T˙W¬s˙P˙QT˙P˙QPQPA¬P˙WQA¬Q˙WsA¬s˙WsTs˙T˙VVAV˙WG˙O˙V
23 11 12 16 17 18 19 20 21 22 syl323anc KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WG˙O˙V
24 simp23l KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WTA
25 simp23r KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙W¬T˙W
26 1 2 3 4 5 6 7 8 9 10 cdleme25cl KHLWHPA¬P˙WQA¬Q˙WTA¬T˙WPQT˙P˙QEB
27 11 17 18 24 25 15 14 26 syl322anc KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WEB
28 simp13l KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WsA
29 simp31 KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙W¬s˙W¬s˙P˙Q
30 1 fvexi BV
31 30 10 riotasv EBsA¬s˙W¬s˙P˙QE=O
32 27 28 29 31 syl3anc KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WE=O
33 32 oveq1d KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WE˙V=O˙V
34 23 33 breqtrrd KHLWHPQT˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WTA¬T˙W¬s˙W¬s˙P˙QsTs˙T˙VVAV˙WG˙E˙V