Metamath Proof Explorer


Theorem cdleme31se2

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 3-Apr-2013)

Ref Expression
Hypotheses cdleme31se2.e E=P˙Q˙D˙R˙t˙W
cdleme31se2.y Y=P˙Q˙S/tD˙R˙S˙W
Assertion cdleme31se2 SAS/tE=Y

Proof

Step Hyp Ref Expression
1 cdleme31se2.e E=P˙Q˙D˙R˙t˙W
2 cdleme31se2.y Y=P˙Q˙S/tD˙R˙S˙W
3 nfcv _tP˙Q
4 nfcv _t˙
5 nfcsb1v _tS/tD
6 nfcv _t˙
7 nfcv _tR˙S˙W
8 5 6 7 nfov _tS/tD˙R˙S˙W
9 3 4 8 nfov _tP˙Q˙S/tD˙R˙S˙W
10 9 a1i SA_tP˙Q˙S/tD˙R˙S˙W
11 csbeq1a t=SD=S/tD
12 oveq2 t=SR˙t=R˙S
13 12 oveq1d t=SR˙t˙W=R˙S˙W
14 11 13 oveq12d t=SD˙R˙t˙W=S/tD˙R˙S˙W
15 14 oveq2d t=SP˙Q˙D˙R˙t˙W=P˙Q˙S/tD˙R˙S˙W
16 10 15 csbiegf SAS/tP˙Q˙D˙R˙t˙W=P˙Q˙S/tD˙R˙S˙W
17 1 csbeq2i S/tE=S/tP˙Q˙D˙R˙t˙W
18 16 17 2 3eqtr4g SAS/tE=Y