Metamath Proof Explorer


Theorem cdleme31snd

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 1-Apr-2013)

Ref Expression
Hypotheses cdleme31snd.d D=t˙U˙Q˙P˙t˙W
cdleme31snd.n N=v˙V˙P˙Q˙v˙W
cdleme31snd.e E=O˙U˙Q˙P˙O˙W
cdleme31snd.o O=S˙V˙P˙Q˙S˙W
Assertion cdleme31snd SAS/vN/tD=E

Proof

Step Hyp Ref Expression
1 cdleme31snd.d D=t˙U˙Q˙P˙t˙W
2 cdleme31snd.n N=v˙V˙P˙Q˙v˙W
3 cdleme31snd.e E=O˙U˙Q˙P˙O˙W
4 cdleme31snd.o O=S˙V˙P˙Q˙S˙W
5 csbnestgw SAS/vN/tD=S/vN/tD
6 2 4 cdleme31sc SAS/vN=O
7 6 csbeq1d SAS/vN/tD=O/tD
8 4 ovexi OV
9 1 3 cdleme31sc OVO/tD=E
10 8 9 ax-mp O/tD=E
11 7 10 eqtrdi SAS/vN/tD=E
12 5 11 eqtrd SAS/vN/tD=E