Metamath Proof Explorer


Theorem cdleme36m

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one on P .\/ Q line. TODO: FIX COMMENT. (Contributed by NM, 11-Mar-2013)

Ref Expression
Hypotheses cdleme36.b B=BaseK
cdleme36.l ˙=K
cdleme36.j ˙=joinK
cdleme36.m ˙=meetK
cdleme36.a A=AtomsK
cdleme36.h H=LHypK
cdleme36.u U=P˙Q˙W
cdleme36.e E=t˙U˙Q˙P˙t˙W
cdleme36.v V=t˙E˙W
cdleme36.f F=R˙V˙E˙t˙R˙W
cdleme36.c C=S˙V˙E˙t˙S˙W
Assertion cdleme36m KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QR=S

Proof

Step Hyp Ref Expression
1 cdleme36.b B=BaseK
2 cdleme36.l ˙=K
3 cdleme36.j ˙=joinK
4 cdleme36.m ˙=meetK
5 cdleme36.a A=AtomsK
6 cdleme36.h H=LHypK
7 cdleme36.u U=P˙Q˙W
8 cdleme36.e E=t˙U˙Q˙P˙t˙W
9 cdleme36.v V=t˙E˙W
10 cdleme36.f F=R˙V˙E˙t˙R˙W
11 cdleme36.c C=S˙V˙E˙t˙S˙W
12 simp11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QKHLWH
13 simp3rl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QtA¬t˙W
14 simp12 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QPA¬P˙W
15 simp13 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QQA¬Q˙W
16 simp21 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QPQ
17 simp3rr KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙Q¬t˙P˙Q
18 2 3 4 5 6 7 8 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WtA¬t˙WPQ¬t˙P˙QEA
19 12 14 15 13 16 17 18 syl132anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QEA
20 2 3 4 5 6 7 8 cdleme3 KHLWHPA¬P˙WQA¬Q˙WtA¬t˙WPQ¬t˙P˙Q¬E˙W
21 12 14 15 13 16 17 20 syl132anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙Q¬E˙W
22 19 21 jca KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QEA¬E˙W
23 simp13l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QQA
24 23 16 jca KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QQAPQ
25 2 3 4 5 6 7 8 cdleme3b KHLWHPA¬P˙WQAPQtA¬t˙WEt
26 12 14 24 13 25 syl13anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QEt
27 26 necomd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QtE
28 simp22 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QRA¬R˙W
29 simp23 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QSA¬S˙W
30 simp3l1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QR˙P˙Q
31 simp3r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QtA¬t˙W¬t˙P˙Q
32 1 2 3 4 5 6 7 8 cdleme36a KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙Q¬R˙t˙E
33 12 14 23 16 28 30 31 32 syl331anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙Q¬R˙t˙E
34 simp3l2 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QS˙P˙Q
35 1 2 3 4 5 6 7 8 cdleme36a KHLWHPA¬P˙WQAPQSA¬S˙WS˙P˙QtA¬t˙W¬t˙P˙Q¬S˙t˙E
36 12 14 23 16 29 34 31 35 syl331anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙Q¬S˙t˙E
37 simp3l3 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QF=C
38 2 3 4 5 6 9 10 11 cdleme35h KHLWHtA¬t˙WEA¬E˙WtERA¬R˙WSA¬S˙W¬R˙t˙E¬S˙t˙EF=CR=S
39 12 13 22 27 28 29 33 36 37 38 syl333anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QF=CtA¬t˙W¬t˙P˙QR=S