Metamath Proof Explorer


Theorem cdleme42g

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 8-Mar-2013)

Ref Expression
Hypotheses cdleme41.b B=BaseK
cdleme41.l ˙=K
cdleme41.j ˙=joinK
cdleme41.m ˙=meetK
cdleme41.a A=AtomsK
cdleme41.h H=LHypK
cdleme41.u U=P˙Q˙W
cdleme41.d D=s˙U˙Q˙P˙s˙W
cdleme41.e E=t˙U˙Q˙P˙t˙W
cdleme41.g G=P˙Q˙E˙s˙t˙W
cdleme41.i I=ιyB|tA¬t˙W¬t˙P˙Qy=G
cdleme41.n N=ifs˙P˙QID
cdleme41.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme41.f F=xBifPQ¬x˙WOx
cdleme34e.v V=R˙S˙W
Assertion cdleme42g KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFR˙S=FR˙V

Proof

Step Hyp Ref Expression
1 cdleme41.b B=BaseK
2 cdleme41.l ˙=K
3 cdleme41.j ˙=joinK
4 cdleme41.m ˙=meetK
5 cdleme41.a A=AtomsK
6 cdleme41.h H=LHypK
7 cdleme41.u U=P˙Q˙W
8 cdleme41.d D=s˙U˙Q˙P˙s˙W
9 cdleme41.e E=t˙U˙Q˙P˙t˙W
10 cdleme41.g G=P˙Q˙E˙s˙t˙W
11 cdleme41.i I=ιyB|tA¬t˙W¬t˙P˙Qy=G
12 cdleme41.n N=ifs˙P˙QID
13 cdleme41.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
14 cdleme41.f F=xBifPQ¬x˙WOx
15 cdleme34e.v V=R˙S˙W
16 simp11 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQKHLWH
17 simp2l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQRA¬R˙W
18 simp2r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQSA¬S˙W
19 1 2 3 4 5 6 15 cdleme42a KHLWHRA¬R˙WSA¬S˙WR˙S=R˙V
20 16 17 18 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙S=R˙V
21 20 fveq2d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFR˙S=FR˙V
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 cdleme42f KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFR˙V=FR˙V
23 21 22 eqtrd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFR˙S=FR˙V