Metamath Proof Explorer


Theorem cdleme42h

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 8-Mar-2013)

Ref Expression
Hypotheses cdleme41.b B=BaseK
cdleme41.l ˙=K
cdleme41.j ˙=joinK
cdleme41.m ˙=meetK
cdleme41.a A=AtomsK
cdleme41.h H=LHypK
cdleme41.u U=P˙Q˙W
cdleme41.d D=s˙U˙Q˙P˙s˙W
cdleme41.e E=t˙U˙Q˙P˙t˙W
cdleme41.g G=P˙Q˙E˙s˙t˙W
cdleme41.i I=ιyB|tA¬t˙W¬t˙P˙Qy=G
cdleme41.n N=ifs˙P˙QID
cdleme41.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme41.f F=xBifPQ¬x˙WOx
cdleme34e.v V=R˙S˙W
Assertion cdleme42h KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFS˙FR˙V

Proof

Step Hyp Ref Expression
1 cdleme41.b B=BaseK
2 cdleme41.l ˙=K
3 cdleme41.j ˙=joinK
4 cdleme41.m ˙=meetK
5 cdleme41.a A=AtomsK
6 cdleme41.h H=LHypK
7 cdleme41.u U=P˙Q˙W
8 cdleme41.d D=s˙U˙Q˙P˙s˙W
9 cdleme41.e E=t˙U˙Q˙P˙t˙W
10 cdleme41.g G=P˙Q˙E˙s˙t˙W
11 cdleme41.i I=ιyB|tA¬t˙W¬t˙P˙Qy=G
12 cdleme41.n N=ifs˙P˙QID
13 cdleme41.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
14 cdleme41.f F=xBifPQ¬x˙WOx
15 cdleme34e.v V=R˙S˙W
16 simp11l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQKHL
17 16 hllatd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQKLat
18 simp1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQKHLWHPA¬P˙WQA¬Q˙W
19 simp2rl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQSA
20 1 5 atbase SASB
21 19 20 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQSB
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32fvcl KHLWHPA¬P˙WQA¬Q˙WSBFSB
23 18 21 22 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFSB
24 simp2ll KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQRA
25 1 3 5 hlatjcl KHLRASAR˙SB
26 16 24 19 25 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙SB
27 simp11r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQWH
28 1 6 lhpbase WHWB
29 27 28 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQWB
30 1 4 latmcl KLatR˙SBWBR˙S˙WB
31 17 26 29 30 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙S˙WB
32 15 31 eqeltrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQVB
33 1 2 3 latlej1 KLatFSBVBFS˙FS˙V
34 17 23 32 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFS˙FS˙V
35 3 5 hlatjcom KHLRASAR˙S=S˙R
36 16 24 19 35 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙S=S˙R
37 36 oveq1d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙S˙W=S˙R˙W
38 15 37 eqtrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQV=S˙R˙W
39 38 oveq2d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFS˙V=FS˙S˙R˙W
40 simp2r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQSA¬S˙W
41 simp2l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQRA¬R˙W
42 simp3 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQPQ
43 eqid S˙R˙W=S˙R˙W
44 1 2 3 4 5 6 7 8 9 10 11 12 13 14 43 cdleme42g KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WRA¬R˙WPQFS˙R=FS˙S˙R˙W
45 18 40 41 42 44 syl121anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFS˙R=FS˙S˙R˙W
46 39 45 eqtr4d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFS˙V=FS˙R
47 36 fveq2d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFR˙S=FS˙R
48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 cdleme42g KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFR˙S=FR˙V
49 46 47 48 3eqtr2d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFS˙V=FR˙V
50 34 49 breqtrd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFS˙FR˙V