Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme41.b |
|
2 |
|
cdleme41.l |
|
3 |
|
cdleme41.j |
|
4 |
|
cdleme41.m |
|
5 |
|
cdleme41.a |
|
6 |
|
cdleme41.h |
|
7 |
|
cdleme41.u |
|
8 |
|
cdleme41.d |
|
9 |
|
cdleme41.e |
|
10 |
|
cdleme41.g |
|
11 |
|
cdleme41.i |
|
12 |
|
cdleme41.n |
|
13 |
|
cdleme41.o |
|
14 |
|
cdleme41.f |
|
15 |
|
cdleme34e.v |
|
16 |
|
simp11l |
|
17 |
16
|
hllatd |
|
18 |
|
simp1 |
|
19 |
|
simp2rl |
|
20 |
1 5
|
atbase |
|
21 |
19 20
|
syl |
|
22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
cdleme32fvcl |
|
23 |
18 21 22
|
syl2anc |
|
24 |
|
simp2ll |
|
25 |
1 3 5
|
hlatjcl |
|
26 |
16 24 19 25
|
syl3anc |
|
27 |
|
simp11r |
|
28 |
1 6
|
lhpbase |
|
29 |
27 28
|
syl |
|
30 |
1 4
|
latmcl |
|
31 |
17 26 29 30
|
syl3anc |
|
32 |
15 31
|
eqeltrid |
|
33 |
1 2 3
|
latlej1 |
|
34 |
17 23 32 33
|
syl3anc |
|
35 |
3 5
|
hlatjcom |
|
36 |
16 24 19 35
|
syl3anc |
|
37 |
36
|
oveq1d |
|
38 |
15 37
|
eqtrid |
|
39 |
38
|
oveq2d |
|
40 |
|
simp2r |
|
41 |
|
simp2l |
|
42 |
|
simp3 |
|
43 |
|
eqid |
|
44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 43
|
cdleme42g |
|
45 |
18 40 41 42 44
|
syl121anc |
|
46 |
39 45
|
eqtr4d |
|
47 |
36
|
fveq2d |
|
48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
cdleme42g |
|
49 |
46 47 48
|
3eqtr2d |
|
50 |
34 49
|
breqtrd |
|