Metamath Proof Explorer


Theorem cdleme42i

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 8-Mar-2013)

Ref Expression
Hypotheses cdleme41.b B=BaseK
cdleme41.l ˙=K
cdleme41.j ˙=joinK
cdleme41.m ˙=meetK
cdleme41.a A=AtomsK
cdleme41.h H=LHypK
cdleme41.u U=P˙Q˙W
cdleme41.d D=s˙U˙Q˙P˙s˙W
cdleme41.e E=t˙U˙Q˙P˙t˙W
cdleme41.g G=P˙Q˙E˙s˙t˙W
cdleme41.i I=ιyB|tA¬t˙W¬t˙P˙Qy=G
cdleme41.n N=ifs˙P˙QID
cdleme41.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme41.f F=xBifPQ¬x˙WOx
cdleme34e.v V=R˙S˙W
Assertion cdleme42i KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFR˙FS˙FR˙V

Proof

Step Hyp Ref Expression
1 cdleme41.b B=BaseK
2 cdleme41.l ˙=K
3 cdleme41.j ˙=joinK
4 cdleme41.m ˙=meetK
5 cdleme41.a A=AtomsK
6 cdleme41.h H=LHypK
7 cdleme41.u U=P˙Q˙W
8 cdleme41.d D=s˙U˙Q˙P˙s˙W
9 cdleme41.e E=t˙U˙Q˙P˙t˙W
10 cdleme41.g G=P˙Q˙E˙s˙t˙W
11 cdleme41.i I=ιyB|tA¬t˙W¬t˙P˙Qy=G
12 cdleme41.n N=ifs˙P˙QID
13 cdleme41.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
14 cdleme41.f F=xBifPQ¬x˙WOx
15 cdleme34e.v V=R˙S˙W
16 simp11l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQKHL
17 16 hllatd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQKLat
18 simp1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQKHLWHPA¬P˙WQA¬Q˙W
19 simp2ll KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQRA
20 1 5 atbase RARB
21 19 20 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQRB
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32fvcl KHLWHPA¬P˙WQA¬Q˙WRBFRB
23 18 21 22 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFRB
24 simp2rl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQSA
25 1 3 5 hlatjcl KHLRASAR˙SB
26 16 19 24 25 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙SB
27 simp11r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQWH
28 1 6 lhpbase WHWB
29 27 28 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQWB
30 1 4 latmcl KLatR˙SBWBR˙S˙WB
31 17 26 29 30 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙S˙WB
32 15 31 eqeltrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQVB
33 1 2 3 latlej1 KLatFRBVBFR˙FR˙V
34 17 23 32 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFR˙FR˙V
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 cdleme42h KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFS˙FR˙V
36 1 5 atbase SASB
37 24 36 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQSB
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32fvcl KHLWHPA¬P˙WQA¬Q˙WSBFSB
39 18 37 38 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFSB
40 1 3 latjcl KLatFRBVBFR˙VB
41 17 23 32 40 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFR˙VB
42 1 2 3 latjle12 KLatFRBFSBFR˙VBFR˙FR˙VFS˙FR˙VFR˙FS˙FR˙V
43 17 23 39 41 42 syl13anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFR˙FR˙VFS˙FR˙VFR˙FS˙FR˙V
44 34 35 43 mpbi2and KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFR˙FS˙FR˙V