Metamath Proof Explorer


Theorem cdleme51finvN

Description: Part of proof of Lemma E in Crawley p. 113. TODO: fix comment. (Contributed by NM, 14-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemef50.b B=BaseK
cdlemef50.l ˙=K
cdlemef50.j ˙=joinK
cdlemef50.m ˙=meetK
cdlemef50.a A=AtomsK
cdlemef50.h H=LHypK
cdlemef50.u U=P˙Q˙W
cdlemef50.d D=t˙U˙Q˙P˙t˙W
cdlemefs50.e E=P˙Q˙D˙s˙t˙W
cdlemef50.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
cdlemef51.v V=Q˙P˙W
cdlemef51.n N=v˙V˙P˙Q˙v˙W
cdlemefs51.o O=Q˙P˙N˙u˙v˙W
cdlemef51.g G=aBifQP¬a˙WιcB|uA¬u˙Wu˙a˙W=ac=ifu˙Q˙PιbB|vA¬v˙W¬v˙Q˙Pb=Ou/vN˙a˙Wa
Assertion cdleme51finvN KHLWHPA¬P˙WQA¬Q˙WF-1=G

Proof

Step Hyp Ref Expression
1 cdlemef50.b B=BaseK
2 cdlemef50.l ˙=K
3 cdlemef50.j ˙=joinK
4 cdlemef50.m ˙=meetK
5 cdlemef50.a A=AtomsK
6 cdlemef50.h H=LHypK
7 cdlemef50.u U=P˙Q˙W
8 cdlemef50.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs50.e E=P˙Q˙D˙s˙t˙W
10 cdlemef50.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 cdlemef51.v V=Q˙P˙W
12 cdlemef51.n N=v˙V˙P˙Q˙v˙W
13 cdlemefs51.o O=Q˙P˙N˙u˙v˙W
14 cdlemef51.g G=aBifQP¬a˙WιcB|uA¬u˙Wu˙a˙W=ac=ifu˙Q˙PιbB|vA¬v˙W¬v˙Q˙Pb=Ou/vN˙a˙Wa
15 1 2 3 4 5 6 7 8 9 10 cdleme50f1o KHLWHPA¬P˙WQA¬Q˙WF:B1-1 ontoB
16 dff1o4 F:B1-1 ontoBFFnBF-1FnB
17 15 16 sylib KHLWHPA¬P˙WQA¬Q˙WFFnBF-1FnB
18 17 simprd KHLWHPA¬P˙WQA¬Q˙WF-1FnB
19 1 2 3 4 5 6 11 12 13 14 cdleme50f1o KHLWHQA¬Q˙WPA¬P˙WG:B1-1 ontoB
20 19 3com23 KHLWHPA¬P˙WQA¬Q˙WG:B1-1 ontoB
21 f1ofn G:B1-1 ontoBGFnB
22 20 21 syl KHLWHPA¬P˙WQA¬Q˙WGFnB
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme51finvfvN KHLWHPA¬P˙WQA¬Q˙WeBF-1e=Ge
24 18 22 23 eqfnfvd KHLWHPA¬P˙WQA¬Q˙WF-1=G