Metamath Proof Explorer


Theorem cdleme7b

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme7ga and cdleme7 . (Contributed by NM, 7-Jun-2012)

Ref Expression
Hypotheses cdleme4.l ˙=K
cdleme4.j ˙=joinK
cdleme4.m ˙=meetK
cdleme4.a A=AtomsK
cdleme4.h H=LHypK
cdleme4.u U=P˙Q˙W
cdleme4.f F=S˙U˙Q˙P˙S˙W
cdleme4.g G=P˙Q˙F˙R˙S˙W
cdleme7.v V=R˙S˙W
Assertion cdleme7b KHLWHRA¬R˙WSA¬S˙P˙QR˙P˙QVA

Proof

Step Hyp Ref Expression
1 cdleme4.l ˙=K
2 cdleme4.j ˙=joinK
3 cdleme4.m ˙=meetK
4 cdleme4.a A=AtomsK
5 cdleme4.h H=LHypK
6 cdleme4.u U=P˙Q˙W
7 cdleme4.f F=S˙U˙Q˙P˙S˙W
8 cdleme4.g G=P˙Q˙F˙R˙S˙W
9 cdleme7.v V=R˙S˙W
10 simp1 KHLWHRA¬R˙WSA¬S˙P˙QR˙P˙QKHLWH
11 simp2 KHLWHRA¬R˙WSA¬S˙P˙QR˙P˙QRA¬R˙W
12 simp31 KHLWHRA¬R˙WSA¬S˙P˙QR˙P˙QSA
13 simp33 KHLWHRA¬R˙WSA¬S˙P˙QR˙P˙QR˙P˙Q
14 simp32 KHLWHRA¬R˙WSA¬S˙P˙QR˙P˙Q¬S˙P˙Q
15 nbrne2 R˙P˙Q¬S˙P˙QRS
16 13 14 15 syl2anc KHLWHRA¬R˙WSA¬S˙P˙QR˙P˙QRS
17 1 2 3 4 5 lhpat KHLWHRA¬R˙WSARSR˙S˙WA
18 10 11 12 16 17 syl112anc KHLWHRA¬R˙WSA¬S˙P˙QR˙P˙QR˙S˙WA
19 9 18 eqeltrid KHLWHRA¬R˙WSA¬S˙P˙QR˙P˙QVA