Metamath Proof Explorer


Theorem cdlemefs32fva1

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 29-Mar-2013)

Ref Expression
Hypotheses cdlemefs32.b B=BaseK
cdlemefs32.l ˙=K
cdlemefs32.j ˙=joinK
cdlemefs32.m ˙=meetK
cdlemefs32.a A=AtomsK
cdlemefs32.h H=LHypK
cdlemefs32.u U=P˙Q˙W
cdlemefs32.d D=t˙U˙Q˙P˙t˙W
cdlemefs32.e E=P˙Q˙D˙s˙t˙W
cdlemefs32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
cdlemefs32.n N=ifs˙P˙QIC
cdleme29fs.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme29fs.f F=xBifPQ¬x˙WOx
Assertion cdlemefs32fva1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QFR=R/sN

Proof

Step Hyp Ref Expression
1 cdlemefs32.b B=BaseK
2 cdlemefs32.l ˙=K
3 cdlemefs32.j ˙=joinK
4 cdlemefs32.m ˙=meetK
5 cdlemefs32.a A=AtomsK
6 cdlemefs32.h H=LHypK
7 cdlemefs32.u U=P˙Q˙W
8 cdlemefs32.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs32.e E=P˙Q˙D˙s˙t˙W
10 cdlemefs32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
11 cdlemefs32.n N=ifs˙P˙QIC
12 cdleme29fs.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
13 cdleme29fs.f F=xBifPQ¬x˙WOx
14 breq1 s=Rs˙P˙QR˙P˙Q
15 simp1 KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙Ws˙P˙QKHLWHPA¬P˙WQA¬Q˙W
16 simp3l KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙Ws˙P˙QsA
17 simp3rl KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙Ws˙P˙Q¬s˙W
18 16 17 jca KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙Ws˙P˙QsA¬s˙W
19 simp3rr KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙Ws˙P˙Qs˙P˙Q
20 simp2 KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙Ws˙P˙QPQ
21 1 2 3 4 5 6 7 8 9 10 11 cdlemefs27cl KHLWHPA¬P˙WQA¬Q˙WsA¬s˙Ws˙P˙QPQNB
22 15 18 19 20 21 syl13anc KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙Ws˙P˙QNB
23 1 2 3 4 5 6 7 8 9 10 11 cdlemefs32snb KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QR/sNB
24 1 2 3 4 5 6 14 22 23 12 13 cdlemefrs32fva1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QFR=R/sN