Metamath Proof Explorer


Theorem cdlemg14g

Description: TODO: FIX COMMENT. (Contributed by NM, 22-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg14g KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PKHLWH
9 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PFT
10 simp2l KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PPA¬P˙W
11 simp2r KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PQA¬Q˙W
12 1 2 3 4 5 6 ltrnu KHLWHFTPA¬P˙WQA¬Q˙WP˙FP˙W=Q˙FQ˙W
13 8 9 10 11 12 syl211anc KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PP˙FP˙W=Q˙FQ˙W
14 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PGP=P
15 14 fveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PFGP=FP
16 15 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PP˙FGP=P˙FP
17 16 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PP˙FGP˙W=P˙FP˙W
18 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PGT
19 1 4 5 6 ltrnateq KHLWHGTPA¬P˙WQA¬Q˙WGP=PGQ=Q
20 8 18 10 11 14 19 syl131anc KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PGQ=Q
21 20 fveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PFGQ=FQ
22 21 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PQ˙FGQ=Q˙FQ
23 22 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PQ˙FGQ˙W=Q˙FQ˙W
24 13 17 23 3eqtr4d KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PP˙FGP˙W=Q˙FGQ˙W