Metamath Proof Explorer


Theorem cdlemg28b

Description: Part of proof of Lemma G of Crawley p. 116. Second equality of the equation of line 14 on p. 117. Note that -. z .<_ W is redundant here (but simplifies cdlemg28 .) (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
cdlemg31.n N = P ˙ v ˙ Q ˙ R F
cdlemg33.o O = P ˙ v ˙ Q ˙ R G
Assertion cdlemg28b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P Q ˙ F G Q ˙ W = z ˙ F G z ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 cdlemg31.n N = P ˙ v ˙ Q ˙ R F
9 cdlemg33.o O = P ˙ v ˙ Q ˙ R G
10 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P K HL W H
11 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P Q A ¬ Q ˙ W
12 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P z A ¬ z ˙ W
13 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P F T
14 simp23r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P G T
15 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
16 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P z A
17 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P v A v ˙ W
18 simp311 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P z N
19 13 18 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P F T z N
20 simp32l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P v R F
21 simp313 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P z ˙ P ˙ v
22 simp33l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P F P P
23 1 2 3 4 5 6 7 8 cdlemg27b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W F T z N v R F z ˙ P ˙ v F P P ¬ R F ˙ Q ˙ z
24 15 16 17 19 20 21 22 23 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P ¬ R F ˙ Q ˙ z
25 simp312 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P z O
26 14 25 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P G T z O
27 simp32r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P v R G
28 simp33r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P G P P
29 1 2 3 4 5 6 7 9 cdlemg27b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W z A v A v ˙ W G T z O v R G z ˙ P ˙ v G P P ¬ R G ˙ Q ˙ z
30 15 16 17 26 27 21 28 29 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P ¬ R G ˙ Q ˙ z
31 1 2 3 4 5 6 7 cdlemg26zz K HL W H Q A ¬ Q ˙ W z A ¬ z ˙ W F T G T ¬ R F ˙ Q ˙ z ¬ R G ˙ Q ˙ z Q ˙ F G Q ˙ W = z ˙ F G z ˙ W
32 10 11 12 13 14 24 30 31 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P Q ˙ F G Q ˙ W = z ˙ F G z ˙ W