Metamath Proof Explorer


Theorem cdlemg28b

Description: Part of proof of Lemma G of Crawley p. 116. Second equality of the equation of line 14 on p. 117. Note that -. z .<_ W is redundant here (but simplifies cdlemg28 .) (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
cdlemg33.o O=P˙v˙Q˙RG
Assertion cdlemg28b KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPQ˙FGQ˙W=z˙FGz˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 cdlemg33.o O=P˙v˙Q˙RG
10 simp11 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPKHLWH
11 simp13 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPQA¬Q˙W
12 simp22 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPzA¬z˙W
13 simp23l KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPFT
14 simp23r KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPGT
15 simp1 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPKHLWHPA¬P˙WQA¬Q˙W
16 simp22l KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPzA
17 simp21 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPvAv˙W
18 simp311 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPzN
19 13 18 jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPFTzN
20 simp32l KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPvRF
21 simp313 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPz˙P˙v
22 simp33l KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPFPP
23 1 2 3 4 5 6 7 8 cdlemg27b KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WFTzNvRFz˙P˙vFPP¬RF˙Q˙z
24 15 16 17 19 20 21 22 23 syl133anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPP¬RF˙Q˙z
25 simp312 KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPzO
26 14 25 jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPGTzO
27 simp32r KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPvRG
28 simp33r KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPGPP
29 1 2 3 4 5 6 7 9 cdlemg27b KHLWHPA¬P˙WQA¬Q˙WzAvAv˙WGTzOvRGz˙P˙vGPP¬RG˙Q˙z
30 15 16 17 26 27 21 28 29 syl133anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPP¬RG˙Q˙z
31 1 2 3 4 5 6 7 cdlemg26zz KHLWHQA¬Q˙WzA¬z˙WFTGT¬RF˙Q˙z¬RG˙Q˙zQ˙FGQ˙W=z˙FGz˙W
32 10 11 12 13 14 24 30 31 syl133anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WzA¬z˙WFTGTzNzOz˙P˙vvRFvRGFPPGPPQ˙FGQ˙W=z˙FGz˙W