Metamath Proof Explorer


Theorem cdlemk16a

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 3-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B = Base K
cdlemk1.l ˙ = K
cdlemk1.j ˙ = join K
cdlemk1.m ˙ = meet K
cdlemk1.a A = Atoms K
cdlemk1.h H = LHyp K
cdlemk1.t T = LTrn K W
cdlemk1.r R = trL K W
cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk1.o O = S D
Assertion cdlemk16a K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W P ˙ R G ˙ O P ˙ R G D -1 A ¬ P ˙ R G ˙ O P ˙ R G D -1 ˙ W

Proof

Step Hyp Ref Expression
1 cdlemk1.b B = Base K
2 cdlemk1.l ˙ = K
3 cdlemk1.j ˙ = join K
4 cdlemk1.m ˙ = meet K
5 cdlemk1.a A = Atoms K
6 cdlemk1.h H = LHyp K
7 cdlemk1.t T = LTrn K W
8 cdlemk1.r R = trL K W
9 cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk1.o O = S D
11 simp11 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W K HL W H
12 simp22 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W D T
13 simp13 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W G T
14 simp33 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W P A ¬ P ˙ W
15 simp21 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W F T
16 simp23 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W N T
17 simp12 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W R F = R N
18 simp321 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W F I B
19 simp323 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W D I B
20 simp31l K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W R D R F
21 1 2 3 4 5 6 7 8 9 10 cdlemkoatnle K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P A ¬ O P ˙ W
22 11 15 12 16 14 17 18 19 20 21 syl333anc K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W O P A ¬ O P ˙ W
23 1 2 3 4 5 6 7 8 9 10 cdlemkole K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P ˙ P ˙ R D
24 11 15 12 16 14 17 18 19 20 23 syl333anc K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W O P ˙ P ˙ R D
25 simp322 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W G I B
26 simp31r K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W R D R G
27 eqid P ˙ R G ˙ O P ˙ R G D -1 = P ˙ R G ˙ O P ˙ R G D -1
28 1 2 3 4 5 6 7 8 27 cdlemh K HL W H D T G T P A ¬ P ˙ W O P A ¬ O P ˙ W O P ˙ P ˙ R D D I B G I B R D R G P ˙ R G ˙ O P ˙ R G D -1 A ¬ P ˙ R G ˙ O P ˙ R G D -1 ˙ W
29 11 12 13 14 22 24 19 25 26 28 syl333anc K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W P ˙ R G ˙ O P ˙ R G D -1 A ¬ P ˙ R G ˙ O P ˙ R G D -1 ˙ W